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The first successfully predicted structure to yield a photonic band-gap (PBG) was that of dielectric
spheres arranged in a diamond lattice.1   Since then, there has been considerable effort to elaborate a
process for the manufacturing of diamond (or diamond-like) structures at submicron wavelengths.  One
such approach consists in etching a large number of hole triplets at off-vertical angles in a slab.2 Another
consists in building an orderly stacking of dielectric rods.3   Yet another consists in etching a series of
horizontal grooves into sequentially-grown layers, and etching vertical holes.4  All these structures are
variations of the same diamond structure, aligned along either the (1,1,1), (0,0,1), or (1,1,0) directions,
respectively.  In theoretical treatments, the use of the plane-wave expansion method is common.5,6,7

However, the simpler structures have geometries that may be amenable to special theoretical treatment.

We have developed a two-dimensional code (extendible to three dimensions) based on the Augmented
Plane-Wave (APW) method of Slater8  which is capable of band structure computations for arrays of
either dielectric or conducting elements.  This method allows a functional basis set that is specialized to
the cylindrical geometry under study.  Until this work, the plane-wave method7 has been used for
dielectrics and Rayleigh scattering theory9 has been used for conductors.

For electronic systems, the APW method is discussed
several in places10,11 in the literature; however, in
general these discussions are limited to three-
dimensional spherically-symmetric systems with
scalar boundary conditions.  Here, the use of a two-
dimensional unit cell along with decomposition of
the wave into two different polarization effectively
changes the vector boundary conditions to scalar
boundary conditions.  We have chosen to use Bessel
functions since they are well suited for elements with
cylindrical surfaces.  The result is that the form of
the matrix element is only slightly different for the
two dimensional electromagnetic-wave case versus
the three-dimensional Schröedinger-wave case.
The Wigner-Seitz cell for the two dimensional
calculation is shown in Figure 1.  The basis is the set
of functions ψi, i = 1, 2, . . . n. In Region I the
Bessel functions Jm(x) and Ym(x) are used as the
basis.  In Region II free waves are used.  The joining
of the Bessel functions with free waves is made
possible through the use of the Laurent series:

Figure 1.  Wigner-Seitz cell used in calculation.
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The joining is continuous in value, but discontinuous in derivative, at the interface.  The electromagnetic
wave equation with periodic boundary conditions is converted into a variational problem, which leads to
the non-linear eigenvalue problem det M = 0, where the matrix elements Mij are:
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In the first two integrals the domain Ω is the area Region I + Region II.  In the first integral the
Hamiltonian operator H = -∇2 + [1 - ε(r)] where ε is the dielectric function.  The third integral is a line
integral on a contour around the circle of discontinuity.  Within the integrand is the difference in the
derivative of a basis function (here, with index j) between the inside and the outside of the circle.  When
the basis functions are inserted into the above equations the matrix elements become:
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where Rm(x) = bmJm(x) + cmYm(x) and R’m(x) is the derivative of R  m(x).  The eigenvalue λ appears
explicitly in a non-linear manner.  The quantities ∆k = |kj - ki| and ∆φ = φj - φi. The symbol δij represents
Kronecker’s delta function.

The coefficients bm and cm are chosen to satisfy the boundary conditions within Region I.  The boundary
conditions depend on the rod material and the polarization, where in “s” polarization the electric field is
parallel to the rod axis and in “p” polarization the magnetic field is parallel to the rod axis.  For example,
if the rod is a perfect conductor, in s polarization the field is zero at the surface of the rod and in p
polarization the derivative of the field is zero.  For a dielectric rod and s polarization, the electric field is
continuous at the surface.  For p polarization, the magnetic field is continuous.  For loss-less isotropic
media the matrix is real and symmetric.   

The expression (6) is processed with a root finder and the roots are found as a function of the initial
orientation of the propagation vector to the rod lattice.  For a given value of the eigenvalue λ = (ω/c)2

the determinant of the matrix is found as the product of the diagonal elements in the matrix U, which is
in turn obtained by LU decomposition of the matrix. These roots represent frequencies for transmission
through the structure.  This is analogous to finding the allowed energies for electrons in a crystal using
the “electronic” APW method.  One complication with this method is that poles in the determinant
sometimes fall near a root.  Some care must be taken in the procedure so as to not skip over those roots.
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We chose to study the band diagram for an
infinite array of long rods arranged on a square
lattice, and compare our results with other
computational methods.  In the examples
below, the rods are either made of dielectric
material or perfect metal.  In Fig. 2 s-wave
results from the code described above has been
compared to the plane wave method developed
at MIT.12    A square lattice of rods was chosen
with a lattice constant 2b = 1.0.  The dielectric
rod radius was set at a = 0.20, with an index of
refraction of the material of 3.40. The APW
code was run with a 2x2, 4x4, 9x9 and 25x25
determinant.  Comparison between the three
shows that the 9x9 matrix was sufficient for
convergence in this problem.  It is seen that the
two codes are in essentially exact agreement in
this case, except only 9 basis functions were
required for the APW method, versus 128 for
the plane-wave method.

In Figure 3 s-wave calculations for a square
lattice of conducting rods is shown.  The rod
radius is 0.187, giving a filling fraction in the
lattice of 0.11.  This example was taken from
Figure 6 of Reference 9.  Shown are the
results for a 2x2 matrix, a 4x4 matrix and a
9x9 matrix.  The authors of Ref. 9 arrive at
this (9x9) level of convergence with a 49x49
matrix, using their Rayleigh scattering
method, which is not tremendously different
from the APW method in the case of
conductors.  The superior convergence of the
APW method is likely due to the continuous
joining of functions at the Region I/ Region II
interface of Figure 1, which may form a more
physical basis set.

The code can be modified for three-
dimensional applications.  For example, a
second or third plane of rods can be added in

orthogonal or non-orthogonal directions. If there were three planes of rods, there would be nine rods per
cell, as in Reference 3. Superlattices are also easily incorporated with this method.  For instance, there
can be multiple rods of various types per unit cell.   

The good convergence of the APW method is due to the good match between the basis set and the
geometrical shape of the structure.  In general, the APW method should prove to be very useful for a
wide range of structures seeing that many structures have elements with cylindrical or spherical surfaces.

Fig. 2.  Photonic s-band structure of a square lattice of rods
(√ε = 3.4) of radius 0.2 in a cell of unit dimension.  The
dashed  and solid heavy lines are for an APW calculation with
2 and 9 basis functions, respectively.  Also shown is a plane-
wave calculation  as a light solid line.  The light line is in
general hidden by the heavy solid line.

Fig. 3.  Photonic s-band structure of a square lattice of
conducting rods (to be compared to Figure 6 of Reference 9).
The cylinder radius is 0.187.  The light dotted line is the result
for a 2x2 matrix.  A 4x4 matrix calculation is shown as a light
line.  The heaviest line is the result of a 9x9 calculation.   
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